
1

Simplified, Parallelized InSAR Scientific 
Computing Environment

Paul A. Rosen, Eric Gurrola, Piyush Agram, 
Geoffrey Gunter 

Jet Propulsion Laboratory
California Institute of Technology

Michael Aivazis
Parasim, Inc.

Howard Zebker
Stanford University

Earth Science Technology Forum
NASA Ames Conference Center

June 12, 2019



2

Simplified Parallelized InSAR Scientific Computing 
Environment (SPISCE) Background
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• Past ESTO investments have created the InSAR Scientific Computing 
Environment (ISCE), used by individual users and semi-operational production 
systems (ARIA)

• The growth in data from Sentinel 1 and soon NISAR requires a fundamentally 
different way of interacting with data

• This work exploits the power for GPUs to slice through data and implement 
framework elements to give scientists a different user experience 

GPU-accelerated Geocoded SLC data and related workflows will help 
users create derived products with simple editable operations   
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Objectives

• Develop a workflow that generates single look complex (SLC) images in an 
easily ingestible form for data utility, incorporating all necessary InSAR phase 
corrections and resampling to provide products that anyone can understand

• Develop methods of computational acceleration by exploiting back projection 
methods on cloud-enabled GPU platforms to directly compute focused and 
InSAR-corrected imagery in UTM (Landsat grid). 

• GPU-parallelize and otherwise accelerate key algorithms in InSAR Scientific 
Computing Environment (ISCE) to gain factors of 10-100 increase in speed.

• Develop framework technologies at the user interface that support a more 
natural way for scientists to specify products and actions. 

• Provide open source solutions
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Geocoded SLC workflow

• Developed the workflow – foundation of data processing in Stanford’s research group

• InSAR process flow experimentation

• Is it needed to create redundant interferograms to get best results in the context of 

the starting point of geocoded SLC?

• Socializing geocoded SLC’s with the community

• Papers at AGU

• Papers at LPS and IGARSS this year. 

GPU parallelization of back-projection processor

• Significant (10-100 X) improvements to speed and efficiency – 2 seconds per image

GPU parallelization of ampcor processor

• Excellent (1000 X) improvement in speed and efficiency

Pyreized workflow

• ISCE 2 components upgrade to pyre – “complete”

• SPISCE 1.0 with GUI showing each component as a workflow node near complete 

Summary of Results
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• Creating a time series view of Kilauea eruption is greatly simplified 
by starting with geocoded SLCs facilitated by backprojection

User-friendly products

Traditional
“range-doppler”
Image – hard to 
interpret!
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L0 SLC processing for TOPS

• Dealiasing
computationally 
expensive and 
very intricate 
though elegant

• Backprojection
same for all 
modes

• Short integration 
time makes 
backprojection
efficient

Standard*                    Backprojection

*Sentinel 1 SAR Technical Guide
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Interferogram formation – by user

Standard (Yague-Martinez et al.,2016)          Backprojection

SLC SLC
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Redundant stacking

Example:  Noise decreases, accuracy increases with 
“redundant” data generation
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Can now generate “redundant” 
interferograms where before it was not 
practical

Conclusion: AIST improved workflow 
makes InSAR sensitive and accurate for 
many more events and studies
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Observed Deformation and Seismicity Application
From 1407 interferograms enabled by AIST backprojection processor

Induced seismicity from oil and gas production – Delaware Basin, Texas
Participants: Texas Bureau of Economic Geology, Stanford Center for Induced and Triggered Seismicity

40 
km

<----- subsidence     uplift ----->

river
At left: Seismicity 
(eq’s) correlates 
well with observed 
deformation signal

Wolfcamp and deeper production

70 km

At right: Production 
correlates well with 
observed 
deformation signal 
south of river

Neither seismicity nor deformation 
correlate spatially north of river, likely 
due to geological setting and fault 
type

Example of Socialization of Products with Community
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Image cross-correlation GPU-acceleration

• Slide a tile within the search window whose shape is the same as the 
reference tile

• Compute a correlation measure at each possible placement
• Record the placements of maximum correlation for each tile
• Build and post-condition a correlation surface to form the offset field

C++ intermediary code improvements (20X)
• memory mapped IO
• algorithms from the C++ STL
• a dedicated data structure to simplify 

multi-dimensional indices arithmetic

GPU code improvements (addl. 1500X)
• careful packing of the input tiles in memory
• minimizing the data transfer cost between 

host and device
• eliminating memory bank conflicts within 

the device
• highly tuned implementation of the 

reduction kernels
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CPU:  Intel Xeon CPU E5-2698 v4 | GPU:  Nvidia

Tesla V100

Performance evaluation:

runtimes for generating a 

single complex image (3600 

x 7200)

GPU-Accelerated back projection comparison

GPU (‘native’ impl.)
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Interferometric phase between CPU & GPU SLCs
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GPU backprojection code modifications
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Workflow visualizer (Flo)

• We are building a web-based application
– simplify and organize access to the dozens of 

configurable parameters
– support interactive processing
– embedded within the isce application

• Managing the user experience for such a 
complex system is a challenge
– multiple layers of information
– complicated workflows tend to become difficult to 

render in an understandable way
– users have high expectations from such interfaces

• Dozens of attempts to solve this problem
– we think we have a good chance to avoid the known 

pitfalls, and provide a workable solution
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Visual language prototype
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Simple flow examples

Server:
• isce+pyre (GitHub: isce-framework/isce2 and pyre/pyre)

Client: 
• SVG (and soon webgl) for the rendering of the graph
• ReactJS framework to build the user experience https://reactjs.org.

Client-Server interaction: a collection of data queries, mutations and subscriptions. 
• GraphQL middleware (https://graphql.org). 
• WebSockets.

https://reactjs.org/
https://graphql.org/
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Early design – editing factory metadata
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Early design – flow execution
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Summary

• ESTO Investments in SAR Processing are 
changing the way we interact with larger and 
larger volumes of data

• GPU-Accelerated generation of directly 
geocoded imagery enables previously prohibitive 
exploration of combinatoric interferometry

• GPU-Accelerated total workflow optimizations 
are enabling a degree of interactivity and 
experimentation on science problems

• A framework-based workflow visualizer, focused 
on products and interface simplicity, promises to 
make the interaction fun, iterative, and minable 
in the future 


